3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

نویسندگان

  • Stephanie Knowlton
  • Chu Hsiang Yu
  • Fulya Ersoy
  • Sharareh Emadi
  • Ali Khademhosseini
  • Savas Tasoglu
چکیده

Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-based desktop 3D printer and a two-step fabrication using an industrial 3D printer based on polyjet technology. This method, compared to conventional fabrication using relatively expensive materials and labor-intensive processes, presents a low-cost, rapid prototyping technique to print functional 3D microfluidic chips. We enhance the capabilities of 3D-printed microfluidic devices by coupling 3D cell encapsulation and spatial patterning within photocrosslinkable gelatin methacryloyl (GelMA). The platform presented here serves as a 3D culture environment for long-term cell culture and growth. Furthermore, we have demonstrated the ability to print complex 3D microfluidic channels to create predictable and controllable fluid flow regimes. Here, we demonstrate the novel use of 3D-printed microfluidic chips as controllable 3D cell culture environments, advancing the applicability of 3D printing to engineering physiological systems for future applications in bioengineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfluidic direct writer with integrated declogging mechanism for fabricating cell-laden hydrogel constructs.

Cell distribution and nutrient supply in 3D cell-laden hydrogel scaffolds are critical and should mimic the in vivo cellular environment, but been difficult to control with conventional fabrication methods. Here, we present a microfluidic direct writer (MFDW) to construct 3D cell-laden hydrogel structures with openings permitting media exchange. The MFDW comprises a monolithic microfluidic head...

متن کامل

Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.

Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cel...

متن کامل

Engineered 3D tissue models for cell-laden microfluidic channels.

Delivery of nutrients and oxygen within three-dimensional (3D) tissue constructs is important to maintain cell viability. We built 3D cell-laden hydrogels to validate a new tissue perfusion model that takes into account nutrition consumption. The model system was analyzed by simulating theoretical nutrient diffusion into cell-laden hydrogels. We carried out a parametric study considering differ...

متن کامل

In Vitro Generation of Pancreatic Pseudo-islets Using Free-standing Mesh Patterned Cellular Hydrogel

This paper reports a simple and direct method to fabricate mesoscopic hydrogel constructs for size controlled pseudo-islets with MIN6 cells, a pancreatic β-cell insulinoma, via lamination of free-standing mesh patterned cellular hydrogel. The MIN6-laden hydrogels with three different micro-patterns were simply fabricated, free-standing cultured, and functionally analyzed to examine the effect o...

متن کامل

In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs

BACKGROUND The three-dimensional (3D) bioprinting technology allows creation of 3D constructs in a layer-by-layer fashion utilizing biologically relevant materials such as biopolymers and cells. The aim of this study is to investigate the use of 3D bioprinting in a clinically relevant setting to evaluate the potential of this technique for in vivo chondrogenesis. METHODS Thirty-six nude mice ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biofabrication

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2016